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Abstract. We analyse high-field current fluctuations in degenerate conductors by mapping the
electronic Fermi-liquid correlations at equilibrium to their semi-classical non-equilibrium form.
Our resulting Boltzmann description is applicable to diffusive mesoscopic wires. We derive a non-
equilibrium connection between thermal fluctuations of the current and resistive dissipation. In
the weak-field limit this is the canonical fluctuation-dissipation theorem. Away from equilibrium,
the connection enables explicit calculation of the excess ‘hot-electron’ contribution to the thermal
spectrum. We show that excess thermal noise is strongly inhibited by Pauli exclusion. This
behaviour is generic to the semi-classical metallic regime.

1. Introduction

In this paper we address a technologically important open problem: non-equilibrium noise
in strongly driven degenerate conductors. Nano-fabrication has made possible a variety of
refined measurements of transport and noise, for many different structures at sub-micron
dimensions [1–8]. Alongside the experiments there has been much theoretical activity [9–16].

A thriving topic is the behaviour of current fluctuations in diffusive wires. Typically, this
concerns structures shorter than the bulk inelastic mean free path but still much longer than
that for elastic scattering. They are in an operating region where randomness of the carrier
motion prevails. This is our regime of interest.

Two theories have come to the fore as methods of choice for describing mesoscopic
transport. These are inherently weak-field models, predicated upon exclusively linear forms
of transport analysis. One technique (Landauer–Büttiker) is based on coherent quantum
transmission [9, 17]. This has been adapted to fluctuations and noise by Khlus [10], Lesovik
[11], Beenakker and Büttiker [12, 13], Martin and Landauer [14], and many others [9, 17].
Another approach (Boltzmann–Langevin) uses stochastic transport equations [9], reduced to
a diffusive model [18]. The same phenomenology has since been applied to fluctuations and
noise by Nagaev [15] and de Jong and Beenakker [9, 16].

Although these mesoscopic-noise methodologies are markedly distinct, both agree on their
paradigm. They view a mesoscopic wire as a random assembly of individual elastic scatterers,
in a bath of free carriers whose propagation, impeded by the scatterers, must be regarded as
strictly diffusive and must be calculated as such [18]. For an exhaustive survey of diffusive
noise theories we cite the recent review of Blanter and Büttiker [17] as well as the earlier one
of de Jong and Beenakker [9].
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The leading diffusive methods for noise also share a number of difficulties. Not least
among these is the issue of conformity with the fluctuation structure of charged Fermi
liquids [19]. This and other basic problems are analysed in detail in references [20]
and [21].

Clean, truly first-principles solutions certainly exist for non-equilibrium noise. Monte
Carlo simulations are very well established, as witness those of the Lecce group [22], even
if high-field Monte Carlo simulations are still rare for metals [23, 24]. In the non-degenerate
case an analytical, self-contained and computable theory of noise has been formulated by
Korman and Mayergoyz [25]. Their approach is strictly kinetic and free of superfluous
phenomenological props. In philosophy it is akin to Green-function models for fluctuations,
such as Stanton and Wilkins’ [26, 27].

In developing a microscopically consistent account of noise, there are cogent reasons to
stay within the traditional kinetic canons rather than embrace novel diffusive doctrines. The
chief reason, perhaps, is sheer technological need; device designers can scarcely afford to be
hobbled by phenomenologies whose congenital linearity denies any access to the vital high-
field region. The small scale of modern device structures means that they are routinely driven
into non-linear response [28].

To illustrate this point we estimate the range of validity for linear diffusion. In the low-
field limit the Einstein relation [18, 20], or drift-diffusion equivalence, underpins diffusive
transport. Roughly speaking, drift-diffusion equivalence breaks down (and linear diffusive
transport with it) when the energy gained in drift mediated by inelastic scattering exceeds the
energy scale for diffusion mediated by elastic processes. In a short metallic wire this means
that (eV/L)min{L,Lin} � h̄vF/Lel, where V is the driving voltage, L is the sample length
and Lin is the (bulk) inelastic mean free path at the Fermi surface. Similarly Lel is the elastic
mean free path (vF is the Fermi velocity). Note that for Lin > L the effective inelastic path
becomes the sample length, since dissipation in the bounding leads is dominant.

For a typical mesoscopic silver wire of electron density 6 × 1022 cm−3, the transport
parameters are [4] L = 30 µm and Lin = 1 cm � L, and the elastic mean free path is
Lel = 50 nm. The threshold voltage is V � 40 mV for the breakdown of the diffusive regime.
In a two-dimensional mesoscopic channel at density 2×1011 cm−2, the threshold is appreciably
lower, with [1]L = 17µm, Lin = 6µm, andLel = 1.4µm, giving V � 0.25 mV. This shows
how readily mesoscopic devices, particularly low-dimensional ones, can enter the non-linear
regime beyond diffusive theory.

The present is the first of three studies covering the essential formalism for non-equilibrium
noise, the action of Coulomb correlations in non-uniform systems [29], and finally the kinetic
description of shot noise [30]. Throughout, we follow one overarching principle. It is that
really consistent models of non-equilibrium fluctuations must conform to basic properties of
the electron gas in a natural way, if and only if such models are grounded explicitly in the
theory of the electronic Fermi liquid.

To require that a kinetic description of fluctuations and noise respect fundamental con-
servation laws in equilibrium is to place a unifying constraint on its low- and high-field forms
together. Our aim is to catalogue all the physical consequences of this assertion. A viable
kinetic model will necessarily recover the fluctuation-dissipation theorem [31], but it must also
contain the equally fundamental conserving sum rules [32].

Much of the authoritative literature on diffusive noise theory, if not all of it, prefers to
make a virtue of its heavy dependence on the fluctuation-dissipation relation while remaining
oblivious to every other basic sum-rule requirement. Such an understanding is too scanty.
It is the full physics of Fermi liquids which governs their fluctuations, a fact which cannot
simply be ignored.
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An established tool for scattering-dominated noise in degenerate conductors is the semi-
classical Green-function approach [26,27,33–35]. We take it beyond its well-understood role
in time-dependent response, by proving that the dynamical Green function also governs the
structure of the adiabatic (steady-state) fluctuations. In turn, these determine the mean initial
strength of the time-dependent fluctuations.

The non-equilibrium adiabatic fluctuations are exact closed functionals of their equilibrium
form. This offers the key to practical and flexible calculations over a wide range of useful
non-perturbative collision models. (Here the detailed classical studies of Stanton and Wilkins
[26, 27] show the way.) Such problems are entirely out of range for the Boltzmann–Langevin
models, of wide currency but quite narrow practicality for conductors in strong driving
fields [26], with strong internal interactions [36].

In section 2 we present a wholly conventional Boltzmann description of carrier fluctuations
in non-uniform metallic systems, down to the same mesoscopic range accessible to alternative
(diffusive) models [9, 17]. We demonstrate the quantitative connection between fluctuations
and power dissipation well out of equilibrium. In the weak-field limit, this connection is the
canonical fluctuation-dissipation theorem (FDT). At high fields, it describes the hot-electron
contribution to current noise. This lets us calculate, in section 3, the excess thermal spectrum,
which is strongly suppressed in a degenerate system. In section 4 we sum up, and preview the
two forthcoming works.

2. Theory

The theoretical discussion is in six parts. We begin by formulating the transport problem
as a direct mapping of the electron Fermi liquid to its non-equilibrium steady state. Next
we describe the steady-state fluctuations, after which we discuss time dependence, then the
dynamic fluctuations and their formal connection with the steady state. This produces a self-
contained expression for the current–current fluctuation, which determines thermal noise. Last,
we analyse the connection between fluctuations and dissipation in the non-equilibrium region.

2.1. Transport model

The semi-classical Boltzmann transport equation for the electron distribution function fα(t) ≡
fs(r,k, t) is[
∂

∂t
+ vks · ∂

∂r
− eE(r, t)

h̄
· ∂
∂k

]
fα(t) = −

∑
α′

[
Wα′α(1− fα′)fα −Wαα′(1− fα)fα′

]
.

(1)

Label α = {k, s, r} denotes a point in single-particle phase space, while sub-label s indexes
both the discrete sub-bands (or valleys) of a multi-level system and the spin state. The
system is acted upon by the total field E(r, t). We study single-particle scattering, with a
rate Wαα′ ≡ δ(r − r′)Wss ′(k,k

′; r) that is local in real space, independent of the driving
field, and that satisfies detailed balance: Wα′α(1 − f eq

α′ )f
eq
α = Wαα′(1 − f eq

α )f
eq
α′ where

f
eq
α is the equilibrium distribution. In a system with ν dimensions, we make the following

correspondence for the identity operator:

δαα′ ≡ δss ′
{
δrr′

�(r)

}
{�(r)δkk′ } ←→ δss ′δ(r − r′)(2π)νδ(k − k′).

The volume �(r) of a local cell in real space becomes the measure for spatial integration,
while its inverse defines the scaling in wave-vector space for the local bands {k, s}.
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The first step is to construct the steady-state solution fα ≡ fα(t → ∞) explicitly from
f eq, which satisfies the equilibrium form of equation (1):[
vks · ∂

∂r
− eE0(r)

h̄
· ∂
∂k

]
f eq
α = 0 = −

∑
α′

[
Wα′α(1− f eq

α′ )f
eq
α −Wαα′(1− f eq

α )f
eq
α′

]
.

(2)

The internal field E0(r) is defined in the absence of a driving field. The quantities f eq and
E0 are linked self-consistently by the usual constitutive relations, the first being the Poisson
equation

∂

∂r
· εE0 = −4πe

(
〈f eq(r)〉 − n+(r)

)
(3a)

in terms of the dielectric constant ε(r), the electron density 〈f eq(r)〉 ≡ �(r)−1∑
k,sf

eq
α , and

the positive background density n+(r), which is taken to be independent of the driving field†.
Normalization to the total particle number is

∑
r �(r)〈f eq(r)〉 = N . The second relation is

the form of the equilibrium function itself,

f eq
α =

[
1 + exp

(
εα − φα
kBT

)]−1

(3b)

at temperature T . The conduction-band energy εα = εs(k; r) may have structural parameters
that depend on position implicitly. The locally defined Fermi level φα = µ − V0(r) is the
difference of the global chemical potential µ and the electrostatic potential V0(r), whose
gradient is eE0(r).

Define the difference function gα = fα − f eq
α . From each side of equation (1) in the

steady state, subtract its equilibrium counterpart‡. We obtain

vks · ∂gα
∂r
− eE(r)

h̄
· ∂gα
∂k
= e(E −E0)

h̄
· ∂f

eq
α

∂k
−

∑
α′
(Wα′αgα −Wαα′gα′)

+
∑
α′
(Wα′α −Wαα′)(f

eq
α′ gα + gα′f

eq
α + gαgα′). (4)

The solutions to equations (2) and (4) are determined by the asymptotic conditions in the
source and drain reservoirs, be it at equilibrium or with an external electromotive force. The
active region includes the carriers within source and drain terminals out to several screening
lengths. This means that local fields are negligible at the interfaces with the reservoirs; in
practice, one shorts out the fields so that E(r) = E0(r) = 0 beyond these boundaries. Then
Gauss’s theorem implies that the system remains globally neutral:∑

r

�(r)〈g(r)〉 ≡
∑
α

gα = 0. (5)

Recast equation (4) as an integro-differential equation. The inhomogeneous term on its
right-hand side generates the explicit dependence on the equilibrium state of the system:∑

α′
B[WAf ]αα′gα′ = eẼ(r)

h̄
· ∂f

eq
α

∂k
+

∑
α′
WA
αα′gα′gα. (6)

† The Poisson equation is always defined in three dimensions. To interpret equation (3a) appropriately when ν < 3,
the electron density 〈f 〉must be understood to carry a (separable) factor in the 3−ν transverse space coordinates. Thus,
for a transport problem confined strictly to two dimensions, the Poisson source term contains 〈f (r)〉 ≡ δ(z)〈f (r⊥)〉,
where z is orthogonal to the plane (r⊥; z = 0). On the other hand, the stabilizing background distribution n+(r) can
be fully three dimensional, as in a modulation-doped heterostructure [28].
‡ The subtraction of left- and right-hand sides of equation (2) from (1) is formally necessary, despite the fact that
both are identically zero. This is because we will later require their functional derivatives with respect to f eq. Those
variations do not vanish identically, as a quick test on equation (2) shows.
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The net non-equilibrium field E − E0 is represented here as Ẽ ≡ Eext + Eind, consisting
of Eext(r), the externally applied field [37], plus the local induced response Eind(r). The
linearized Boltzmann operator B[WAf ] is

B[WAf ]αα′ = δαα′
[
vk′s ′ ·

∂

∂r′
− eE(r

′)
h̄

· ∂

∂k′
+

∑
β

(Wβα′ −WA
βα′fβ)

]
−Wαα′ +WA

αα′fα

(7)

with WA
αα′ = Wαα′ − Wα′α . Note that WA = 0 if the scattering is elastic or if a linear

approximation (such as the Drude one) replaces the explicit Boltzmann collision term.
If it is to represent the physical solution, g must vanish with Ẽ in the equilibrium limit.

This is guaranteed by the Poisson equation for the induced field:

∂

∂r
· εEind = −4πe

(
〈f (r)〉 − 〈f eq(r)〉

)
= −4πe〈g(r)〉.

2.2. Steady-state response

To calculate the adiabatic response of the system about its steady non-equilibrium operating
point, we introduce the propagator [38]

Gαα′
def= δgα

δf
eq
α′

(8)

with a global constraint following directly from equation (5):∑
α

Gαα′ = 0 for all α′. (9)

The equation for G is derived by taking variations on both sides of equation (4):∑
β

B[WAf ]αβGβα′ = δαα′
[
eẼ(r′)
h̄

· ∂

∂k′
+

∑
β

WA
βα′gβ

]
−WA

αα′gα. (10)

The variation is restricted by excluding the reaction of the local fields E0(r) and E(r). This
means that G is a response function free of Coulomb screening. Here we treat the electrons
as an effectively neutral Fermi liquid. In our second paper we will describe the complete
fluctuation structure, with Coulomb effects [30].

All of the steady-state fluctuation properties induced by the thermal background will be
specified in terms ofG and the equilibrium two-body fluctuation. This consists of the ‘proper’
electron–hole pair correlation in its static long-wavelength limit (up to a normalization factor).
In the free-electron approximation [32], that correlation is

lim
q�kF

[
lim
ω→0

(
f

eq
s (r,k − q/2)− f eq

s (r,k + q/2)

h̄ω − εs(k + q/2; r) + εs(k − q/2; r)
)]
= −δf

eq
α

δεα
= δf

eq
α

δφα
(11a)

where the net momentum transfer becomes negligible relative to the Fermi wavenumber kF.
The formal statistical-mechanical definition of the occupation-number fluctuation 'f eq takes
it as the variation of the occupancy f eq, equation (3b), with respect to the electrochemical
potential and normalized to the thermal energy (keeping T and the local volume �(r) fixed).
That is,

'f eq
α ≡ kBT

δf
eq
α

δφα
. (11b)

It is easy to derive the free-electron form of the equilibrium fluctuation:

'f eq
α = f eq

α (1− f eq
α ). (11c)
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When there are strong exchange–correlation interactions the two-body correlation, equation
(11a), is renormalized by a coefficient that depends on the Landau quasi-particle parameters.
This coefficient carries through in'f eq. In the present model we neglect exchange–correlation
effects. This is a valid approximation in dense degenerate systems [32].

Before discussing the non-equilibrium fluctuations we comment on the crucial contrast
between the quantum-Fermi-liquid origin of equation (11) and the widespread Boltzmann–
Langevin approach [31], which is essentially classical. Equation (11a) describes an elementary
and kinematically coupled electron–hole excitation. Its form is determined by the same
quantum equation of motion whose semi-classical limit is the Boltzmann equation itself [39].

The physical character of a polarized excitation demands its representation as a self-
contained entity. In thermodynamic terms, stochasticity attaches to the spontaneous generation
of electron–hole pairs in the system and not to each of the constituents, independently (as
if pairwise electron–hole balance were of no physical consequence). By its nature, a pair
fluctuation cannot be decomposed arbitrarily into two stochastically unlinked one-particle
factors. The Boltzmann–Langevin treatment is tantamount to such a decomposition. Neither
natural nor necessary for describing fluctuations in a Fermi liquid, it is thus dispensable.

Define the two-point particle–hole function

'f
(2)
αα′ ≡ (δαα′ +Gαα′)'f

eq
α′ .

The steady-state distribution of the local number fluctuation is the sum of all of the two-body
terms:

'fα =
∑
α′
'f

(2)
αα′ = 'f eq

α +
∑
α′
Gαα′ 'f

eq
α′ for all α. (12)

Once the explicit solution for G is obtained, the behaviour of 'f is known completely. This
non-equilibrium fluctuation satisfies the linearized steady-state Boltzmann equation:∑

β

B[WAf ]αβ 'f β = 0. (13)

We see that the solution to this equation is manifestly a linear functional of its equilibrium
counterpart. Jointly, equations (12) and (13) mean that any scaling behaviour exhibited by
the fluctuations at equilibrium must also be exhibited by the actual fluctuations for the non-
equilibrium problem. That is the direct result of local equilibrium in the asymptotic leads, and
of overall neutrality in the system made up of conductor plus leads.

The proportionality of all thermally induced noise to ambient temperature T is inevitable
in the degenerate limit. This has implications for understanding shot noise in metallic con-
ductors [20,21,30]. Shot noise never scales with T . We comment further on the scaling issue
in the later sections.

One may compare the analysis in terms of G and 'f (2) with the equal-time correlator
introduced by Gantsevich et al [34]. The equal-time correlator is itself a hierarchical functional
of other correlators (such as the current fluctuations), whose solutions are unknown a priori and
which must be closed by force, either by truncation or by an ad hoc heuristic device such as the
Boltzmann–Langevin one. This makes for a less-than-tractable computational scheme, at least
beyond a narrow repertoire of special limits (linear response; classical particles; weak non-
uniformity). In particular, a calculable strategy for degenerate non-equilibrium fluctuations,
based on the equal-time correlator, has yet to be demonstrated.

By contrast, we show below that G is explicitly determined by the dynamical Green
function for the linearized Boltzmann equation (see equation (30)). As pointed out by
Stanton [27], the Boltzmann–Green functions are much more straightforward to compute
for a wide range of collision models. This ease of calculation extends toG and hence to'f (2),
which provides the initial conditions for a naturally closed dynamical solution.
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Global charge neutrality requires that the total fluctuation strength over the sample,
'N = ∑

r�(r)〈'f (r)〉, be conserved. This constrains not only the steady-state but also
the time-dependent fluctuations.

2.3. Time dependence

Calculation of the dynamic response requires the time-dependent Green function [33]

Rαα′(t − t ′) def= θ(t − t ′) δfα(t)
δfα′(t ′)

(14)

with initial value Rαα′(0) = δαα′ . As with G, the variation is restricted. The linearized
Boltzmann equation satisfied by R(t − t ′) is derived from equation (1) and takes the form∑

β

{
δαβ

∂

∂t
+ B[WAf ]αβ

}
Rβα′(t − t ′) = δ(t − t ′)δαα′ . (15)

Summation over α on both sides of this equation gives zero contribution from∑
α

∑
β B[WAf ]αβRβα′(t − t ′). Subsequent integration over t leads to conservation of

normalization [33]:∑
α

Rαα′(t − t ′) = θ(t − t ′). (16)

The time-dependent propagator is a two-point correlation. It tracks the history of a fluctuation
of unit strength, created in state α′ at time t ′. The fluctuation strength in state α, at the later
time t , is Rαα′(t − t ′). In the long-time limit, equation (15) goes to the steady-state equation
(13) independently of α′, soRαα′(t →∞) ∝ 'fα . Together with equation (16) this gives [33]

Rαα′(t →∞) = 'fα
'N

. (17)

All of the time-dependent fluctuation properties induced by the thermal background
are specified in terms of R and the steady-state non-equilibrium fluctuation 'f . From the
dynamical particle–hole propagator [34], that is 'f (2)αα′(t) ≡ Rαα′(t)'fα′ , one constructs the
lowest-order moment

'fα(t) =
∑
α′
'f

(2)
αα′(t) (18)

in analogy with equation (12). Equation (15), with its adjoint [33], implies that'fα(t) = 'fα
for t > 0. Thus the intrinsic time dependence of'f (2)(t) is not revealed through this quantity †.
Equation (16) ensures constancy of the total fluctuation strength:

∑
r�(r)〈'f (r, t)〉 = 'N

for t > 0.

2.4. Dynamic correlations

We move to the frequency domain. An important outcome is the quantitative link between
fluctuations and resistive power dissipation in the non-equilibrium regime. This requires
expressing both the difference function g and the adiabatic propagator G directly in terms of
the dynamical Green function. The Fourier transform R(ω) = ∫

dt eiωtR(t) of the retarded
time-dependent Green function satisfies∑

β

{
B[WAf ]αβ − iωδαβ

}
Rβα′(ω) = δαα′ (19)

† Note: a remark in reference [38], that 'f (t) is inherently time-dependent, holds only for collision-time approx-
imations.



5240 F Green and M P Das

showing that R(ω) is the resolvent for the linearized Boltzmann operator of equation (7). From
equation (16), the global condition on the resolvent is∑

α

Rαα′(ω) = − 1

i(ω + iη)
(η→ 0+). (20)

At face value this does not match the corresponding criterion for G, equation (9). To solve
equation (10) for the steady-state propagator explicitly in terms of the dynamic one, we follow
Kogan and Shul’man [33] in introducing the intrinsically correlated part of R(ω). This is

Cαα′(ω) = Rαα′(ω) +
1

i(ω + iη)

'f α

'N
. (21)

Once the long-time adiabatic term is removed, C(ω) conveys the purely transient response of
the system. It satisfies a pair of identities [33]. First, the Fourier transform of the relation
'f (t) = θ(t)'f translates to∑

α′
Cαα′(ω)'fα′ = 0 for all α (22)

while equation (20) leads to∑
α

Cαα′(ω) = 0 for all α′. (23)

The latter parallels the constraint onG. Like R(ω), the correlated propagator is analytic in the
upper half-plane Im{ω} > 0, and satisfies the Kramers–Krönig dispersion relations. Unlike
R(ω), however, C(ω) is regular for ω→ 0.

We now obtain g and G in terms of the correlated dynamical response. Consider the
equation ∑

α′

{
B[WAf ]αα′ − iωδαα′

}
gα′(ω) = eẼ(r)

h̄
· ∂f

eq
α

∂k
+

∑
α′
gαW

A
αα′gα′ . (24)

Inversion with the resolvent yields

gα(ω) =
∑
α′

Cαα′(ω)
eẼ(r′)
h̄

· ∂f
eq
α′

∂k′
+

∑
α′β

Cαα′(ω)gα′W
A
α′βgβ. (25)

The dominant low-frequency component of R(ω) does not contribute to the right-hand side of
this equation. In the first term it results in a decoupling of the summation over α′, yielding zero
because ∂f eq

α′ /∂k
′ is odd in k′; in the second term, decoupling means that the double summation

over α′ and β vanishes by antisymmetry. In the static limit, equation (24) becomes the
inhomogeneous equation (6); moreover equation (23) means that g(ω = 0) satisfies equation
(5), the sum rule for g. Therefore g = g(0), or

gα =
∑
α′

Cαα′(0)
eẼ(r′)
h̄

· ∂f
eq
α′

∂k′
+

∑
α′β

Cαα′(0)gα′W
A
α′βgβ. (26)

This identity is central to the fluctuation-dissipation theorem.
In models with symmetric scattering,WA is zero and the adiabatic Green function assumes

a simple form on varying both sides of equation (26):

Gαα′ = Cαα′(0)
eẼ(r′)
h̄

· ∂

∂k′
. (27)

More generally, an analysis similar to that for g(ω) can be used directly for the adiabatic
propagator. Introduce the operator G(ω), defined to satisfy the dynamic extension of equ-
ation (10):∑
β

{
B[WAf ]αβ − iωδαβ

}
Gβα′(ω) = δαα′

[
eẼ(r′)
h̄

· ∂

∂k′
+

∑
β

WA
βα′gβ

]
−WA

αα′gα. (28)
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This has the solution

Gαα′(ω) = Cαα′(ω)
eẼ(r′)
h̄

· ∂

∂k′
−

∑
β

(
Cαα′(ω)− Cαβ(ω)

)
WA
α′βgβ. (29)

In the first term on the right-hand side, the low-frequency component of R(ω) makes no
contribution after decoupling because the physical distributions Fα on which G(ω) operates
vanish sufficiently fast that

∑
k∂Fα/∂k = 0. In the second right-hand term the uncorrelated

parts of Rαα′(ω) and Rαβ(ω) cancel directly. We conclude as before that

Gαα′ = Cαα′(0)
eẼ(r′)
h̄

· ∂

∂k′
−

∑
β

(
Cαα′(0)− Cαβ(0)

)
WA
α′βgβ. (30)

This is a crucial result. It shows

(i) that the adiabatic structure of the steady state, throughG, is of one piece with the correlated
dynamic response (the result of causality and global charge neutrality), and

(ii) that the non-equilibrium correlation structure evolves expressly out of the equilibrium
state, through the specific functional form of G'f eq.

We have proved that this non-perturbative kinetic description of fluctuations is self-
contained, given its conventional set of assumptions and boundary conditions. The kinetic
formalism has inherent predictive power. Hence, extraneous phenomenologies are not needed
to make it viable.

2.5. Spectral density

The vehicle for the physics of current noise is the velocity auto-correlation. It is a two-
point distribution in real space, built on the correlated part of the two-particle fluctuation
'f (2)αα′(ω) = Rαα′(ω)'fα′ . Following Gantsevich, Gurevich, and Katilius [34] it is a double
sum over the kinematic states:

〈〈vv′'f (2)(r, r′;ω)〉〉′c def= 1

�(r)

∑
k,s

1

�(r′)

∑
k′,s ′

vks Re{Cαα′(ω)}vk′s ′ 'fα′ . (31)

Its physical meaning is the following. At any time, the system in steady state has a fluctuation
background that is fed by spontaneous energy exchanges with the (equilibrium) thermal bath.
The average strength of the fluctuations is fixed by the distribution'f . The elementary modes
making up this background are long-wavelength electron–hole excitations; these are given by
'f (2)(ω). The pair excitations are not themselves dynamically stable. Their transient evolution
is determined by the propagator C(ω) acting upon the ensemble-averaged background source,
'f . Finally, the velocity–velocity correlation for the pair process is obtained by attaching
velocity operators at the start and end of the electron–hole excitations, and summing over
states [32].

This approach to auto-correlations makes straightforward, and completely standard, use of
the Boltzmann [34] and Fermi-liquid [32] theories. Our particular contribution is to have given
an explicit recipe for computing the steady-state form of 'f semi-classically, by analysing
the underlying adiabatic propagator G. Practical calculations should thereby become easier
for degenerate systems at high driving fields.

The one-point object derived from equation (31):

Sf (r, ω) = e2
∑
r′
�(r′)〈〈(Ẽ(r) · v)(Ẽ(r′) · v′)'f (2)(r, r′;ω)〉〉′c (32)

measures the local effect of fluctuations that are spread throughout the system. Formally it
is the auto-correlation function of the power transferred from field to carriers, an inherently
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volume-distributed property that is represented here in terms of a locally defined spectral
density. Sf is closely related to the thermally induced current noise, integrated over the entire
structure. In the weak-field limit it satisfies the FDT.

The two-point velocity correlator

〈〈vv′'f (2)(r, r′;ω)〉〉′c/'N
which is the response to a change in total particle number (and which does not scale with T ),
should provide the direct basis for shot-noise calculations across distances |r−r′| comparable
to the mean free path. It is natural to ask how shot noise fits into the framework of equation (32).
Within semi-classical kinetics, the short answer is that shot noise cannot be encompassed by the
generic spectrum for thermal noise. For, as we have rigorously shown, all thermal fluctuations
are required to scale with T in the strongly degenerate (metallic) regime. Shot noise, on the
other hand, has no such scaling. Therefore, whatever the kinetic description of shot noise may
be, it is impossible for it to exhibit the smooth physical ‘crossover’ into thermal noise that is
the primary feature of every diffusive model [31].

The essentials of our kinetic approach to mesoscopic shot noise are explored in reference
[30]. In reference [20] we propose a quite specific experimental test of our theory, in contra-
distinction to the diffusive ones.

2.6. Fluctuation and dissipation

The fluctuation-dissipation relation near equilibrium ties the spectral density of the thermal
current fluctuations to the dissipative effects of the steady current in the system. However,
dissipation by itself does not exhaust the physics of this sum rule. There are non-linear terms,
negligible in linear response, that dominate the high-field behaviour of the noise [26, 35]. In
view of this, it is imperative to reveal the precise nature and action of these terms. We do so.

The resolvent property of R(ω) provides a formal link between the steady-state (one-body)
solution g and the dynamical (two-body) fluctuation'f (2) at the semi-classical level. Taken to
its equilibrium limit this becomes the familiar theorem. The connection is made in two steps.
Consider the kinematic identity

∂f
eq
α

∂k
= − h̄

kBT
vks 'f

eq
α (33)

and apply it to the leading term on the right-hand side of equation (26). The result is

gα = − e

kBT

∑
α′

Cαα′(0)(Ẽ · v)α′ 'f
eq
α′ + hα, (34)

in which

hα =
∑

α′β
Cαα′(0)gα′W

A
α′βgβ.

Evaluation of the current density according to J(r) = −e〈vg〉 means that the power density
P(r) = Ẽ(r) · J(r) for Joule heating can be written as

P(r) = e2

kBT

1

�(r)

∑
k,s

∑
α′
(Ẽ · v)αCαα′(0)(Ẽ · v)α′ 'f

eq
α′ − e〈Ẽ · vh〉. (35)

In the second step we take the one-point spectral function Sf in the static limit, substituting
for 'f from equation (12) in the right-hand side of equation (32) to give

Sf (r, 0) = e2

�(r)

∑
k,s

∑
r′

∑
k′,s ′
(Ẽ · v)αCαα′(0)(Ẽ · v)α′ 'f

eq
α′ + Sg(r, 0) (36)
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where Sg(r, 0) is generated by replacing 'f with 'g ≡ 'f − 'f eq in equation (31), and
subsequently in equation (32). Direct comparison of equations (35) and (36) leads to

Sf (r, 0)

kBT
= P(r) + e〈Ẽ · vh〉 +

Sg(r, 0)

kBT
. (37)

This is the precise connection between the non-equilibrium thermal current fluctuations and
resistive dissipation in the system.

The limiting weak-field form of equation (37) is easily obtained. We prove that it is the
linear fluctuation-dissipation theorem. Observe that the term in h on the right-hand side varies
as Ẽg2, while the final term varies as Ẽ2'g; both of these contributions are therefore of order
Ẽ3. Suppose that the system is uniform. Then Ẽ = Eext = E acts along the x-axis. Division
by E2 on both sides of equation (37) gives

1

E2

Sf (r, 0)

kBT
→ |Jx |

E
= σ (38)

where σ is the low-field conductivity. Equation (38) is the canonical FDT.
The non-dissipative and purely non-equilibrium structures beyond P(r) can be expanded

similarly to it. We discuss the symmetric-scattering case, for which there is no contribution
e〈Ẽ · vh〉. Within Sg we apply the formula for the adiabatic propagator, equation (27), to
express 'g = ∑

G'f eq in terms of the correlated dynamic response function C(ω). This
produces the closed form

Sg(r, 0) = e2

�(r)

∑
k,s

∑
β

(Ẽ · v)αCαβ(0)(Ẽ · v)β

(∑
α′

Cβα′(0)
eẼ(r′)
h̄

· ∂'f
eq
α′

∂k′

)

= − e3

kBT

1

�(r)

∑
k,s

∑
α′
(Ẽ · v)α(C(0)Ẽ · v)

2
αα′(1− 2f eq

α′ )'f
eq
α′ . (39)

The second line follows from the first after using equation (33) to express ∂'f eq/∂k in terms
of f eq and 'f eq, and taking an inner sum into (C(0)Ẽ · v)2.

The expression above differs markedly from the rate of energy loss P(r) by Joule heating.
In contrast, Sg(r, 0) relates directly to non-equilibrium broadening of the fluctuations, due to
the excess energy gained from the field during intervals of ballistic flight [27]. The extent of
the broadening is limited by dynamical dissipation of the excess energy, locally (by prompt
inelastic scattering) or remotely (by carrier relaxation in the ideally absorbing terminals). The
impact of this term on current noise is felt only for substantial departures from the weak-field
regime.

There exist several alternative generalizations of the FDT for extended bulk systems
[40–42]. We mention the best known, which defines the non-equilibrium noise temperature
Tn pivotal to the interpretation of device-noise data [41]. Phenomenologically Tn is obtained,
for a non-linear operating point, by normalizing Sf with the differential conductivity σx(Ẽ) =
∂Jx/∂Ẽx such that kBTn(Ẽ) ≡ Sf /σx(Ẽ)Ẽ2

x , corresponding to the output of a small-signal
noise measurement. (In general Tn is not isotropic.) Our equations (35)–(39) provide a
microscopic framework for computing the noise spectral density in a wide class of degenerate
systems. Since σx(Ẽ) is also calculable within the same framework, this yields Tn.

3. Application to high-field noise

We can now explore one of the most significant properties of the excess spectrum Sg: its
strong inhibition by degeneracy. That there exists an additional, purely quantum-statistical,
constraint on field-driven broadening is seen directly in the factor (1− 2f eq) of equation (39).
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This suppresses the contribution of Sg relative to the corresponding classical result, in which
the factor is unity. Suppression of electron heating by Pauli exclusion reflects the large energy
cost of displacing electrons deep inside the Fermi sea.

To highlight the difference between dissipative and hot-electron terms, we revisit a
simple example [35, 43], the uniform electron gas in the constant-collision-time (Drude)
approximation subject to a field E = −Ex̂. Expressions for the power density P and hot-
electron component Sg are derived in the appendix. The thermally driven current–current
spectral density, taken over a uniform sample of lengthLx and total volume�, is given by [41]

S(E, ω) def= 4
∑

r

�(r)
∑
r′
�(r′)

〈〈(
−evx
Lx

)(
−ev

′
x

Lx

)
'f (2)(ω)

〉〉′
c

= 4
�Sf (ω)

L2
xE

2
. (40)

Writing the sample conductance as G = �P/L2
xE

2, the static limit of the spectrum is
determined by equation (37):

S(E, 0) = 4GkBT

[
1 +

Sg(0)

P kBT

]
= 4GkBT

[
1 +

'n

n

(
m∗µ2

eE
2

kBT

)]
. (41)

We have substituted for P and Sg respectively from equations (A.7) and (A.9). The electronic
density is n while 'n = 'N/� is the number-fluctuation density. The effective electron
mass is m∗ and µe is the mobility.

The term Sg/PkBT is a relative measure of the hot-electron contribution to the noise. The
inhibiting effect of degeneracy, through 'n/n, is greatest at low temperature and least in the
classical regime. When the Fermi energy εF satisfies εF � kBT , the ratio'n/n goes to unity
and the hot-electron term is that of a classical electron gas (low density, high temperature). Its
form in the high-field limitE � √

kBT/m∗µ2
e is S ∼ 4Gm∗µ2

eE
2, asymptotically independent

of T .
On the other hand, when kBT � εF the system is strongly degenerate. In a ν-dimensional

system we have εF ∝ n2/ν . Then

'n

n
= kBT

n

∂n

∂εF
→ νkBT

2εF
.

With equation (41) this leads to

S(E, 0)

S(0, 0)
→ 1 +

ν

2

(
m∗µ2

eE
2

εF

)
. (42)

Note that the thermal fluctuation spectrum S(E, 0) necessarily vanishes with temperature,
while its ratio with the Johnson–Nyquist spectral density S(0, 0) = 4GkBT continues to
exhibit a hot-electron excess which is now scaled by the Fermi energy.

Figure 1 displays the excess-noise spectral ratio in a two-dimensional electron gas, as
a function of the applied field, when T ranges from the degenerate limit to well above the
Fermi temperature TF = εF/kB. For T much greater than both TF andm∗µ2

eE
2/kB the excess

contribution becomes classical, independent of temperature, and thus small compared with the
now-dominant base value S(0, 0). This is evident in figure 1 through the gradual downward
shift of the plots, with increasing T .

Equation (42) may be compared with a perturbative estimate by Landauer [44] in the
degenerate limit, for which the analogous excess term is (δU/kBT )

2, where δU ∼ m∗µeEvF

is a characteristic energy gain. Taken at face value, this would suggest that hot-electron effects
in the low-T regime can be enhanced even more by further cooling of the system.

This counter-intuitive result comes from inappropriate use of perturbation analysis. Series
expansion of the thermal current noise, in powers of E, fails to account for non-analyticity of
the full non-perturbative solution in its approach to equilibrium [45]. Non-analyticity of the
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Figure 1. Zero-frequency spectral density of the excess (hot-electron) thermal noise, above the
equilibrium noise, in a degenerate and uniform two-dimensional electron gas. The excess is plotted
as its ratio with the zero-field noise S(E = 0) = 4GkBT as a function of driving field E and for
temperatures T between 0 and 900 K, in steps of 150 K. The dot–dashed line is at T = 300 K. In the
degenerate limit T � TF, thermal noise scales with T ; thus the excess-noise ratio is independent
of temperature. At high temperature, the excess ratio for a given field value diminishes as its
denominator S(0) becomes dominant.

distribution function fk precludes the reliable calculation of moment averages by expanding it
about equilibrium, as in reference [44]. (It is reassuring—and only seemingly fortuitous—that
the actual linear current response is reproduced exactly by solving the transport equation, as
usual, to first order in the field [27].)

The relevance of non-analyticity to transport physics has been questioned by Kubo, Toda,
and Hashitsume [46]. They regard its appearance as spurious, a specific artefact of the crude
way in which the Drude approximation treats real collisions. That is to overlook the appreciably
broader evidence for non-analyticity in the variety of collision models assembled by Bakshi
and Gross [45].

Even within the Drude model of a degenerate conductor (oversimplified though it is), it
is clear that its exact non-perturbative solution does produce physically consistent scaling of
the excess noise with T . Equally clearly, finite-order response theory does not. Kubo linear
response recovers only S(0, 0) and misses the non-linear excess noise altogether. Such sharp
differences between perturbative and non-perturbative predictions should be experimentally
measurable in the hot-electron spectrum. In our view, issues of non-analyticity and its physical
manifestation remain open.

We make some final comments on shot noise and the impossibility [20, 21, 30] of a
theoretical crossover, unifying thermal and shot noise for mesoscopic metallic wires. The
diffusive crossover formula, ostensibly identical in form to the basic equation (40), always
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generates a T -independent term [12–16]. One might have expected that a computation
of the spectral density of equation (40), taken in the semi-classical quasi-ballistic limit
Lx � m∗vFµe/e, would yield an expression for S(E, 0) that is independent of T and
proportional to the current I = GV ; in other words, shot noise [27].

We have carried out this quasi-ballistic exercise for a degenerate system, in simplified
form [43]. At high fields it gives S(E, 0) ∼ 2eI (kBT/εF). This is indeed linear in I but
thermal nevertheless, since its immediate source is the generic spectral relation, equation (39).

Thermal fluctuations are induced by spontaneous and quasi-continuous changes in the
total internal energy of carriers, throughout the whole active volume of a device. Shot-noise
fluctuations are induced by spontaneous and discrete changes in total carrier number, through
the device’s interfaces with the outer circuit. Such qualitative and topological distinctions may
be of little practical importance in the classical macroscopic world. However, it is not at all
clear that they are immaterial to the metallic mesoscopic regime. The issue is under active
examination [30].

A leading task is to identify the kinetic origin of the empirical crossover between thermal
and shot noise, apparent in real mesoscopic conductors [1–5]. Once again we stress that,
regardless of how shot noise is to be described microscopically, the logical and conceptual
incompatibilities between diffusive explanations of the crossover (quantum as well as semi-
classical) and strict kinetic theory have already been uncovered and analysed [20,21]. We will
present a fully detailed semi-classical kinetic model of shot noise in due course.

4. Summary

We have described, and applied, a genuinely non-equilibrium kinetic formalism for current
fluctuations. It holds for metallic systems down to mesoscopic scales, within the ambit of semi-
classical theory. Our strategy for incorporating microscopic Fermi-liquid correlations within
the Boltzmann picture safeguards the conservation laws at the two-body level. Conservation
continues to underpin the nature of current noise at high fields.

Our theory leads to a precise quantitative link between non-equilibrium thermal current
fluctuations and energy dissipation. In its low-field form, this is the standard fluctuation-
dissipation theorem of linear-response analysis. At high fields, it highlights the pervasiveness
of strong degeneracy even in hot-electron noise.

In this completely standard description, correctness and calculability do not derive from
the ad hoc assumption of fictive Langevin noise sources; far less do they rest on diffusive
analogies that fail to respect the canonical properties of electronic Fermi systems. Rather,
our model’s integrity stems from the microscopic structure of its underlying Green functions.
They describe how the fundamental electron–hole pair excitations evolve within a metallic
conductor, in the semi-classical limit.

We have discussed how to map these native polarized correlations non-perturbatively,
from their equilibrium distribution to its analogue in the externally driven conductor. The
resulting high-field noise spectrum yields a faithful signature of its source, the elementary
non-equilibrium polarization processes.

The main, and physically inevitable, consequence of our rigidly orthodox kinetic
investigation is the intrinsic scaling of degenerate-electron fluctuations with thermodynamic
temperature. For diffusive phenomenologies, this is one phenomenon too many. In sustaining
their predictions for the shot noise of metallic wires, they are bound to assert the outright
impossibility of T -scaling for hot-electron noise [21]. This must be so for any theory that
predicts a seamless crossover between thermal noise and shot noise.

There is an undeniable connection between T -scaling and the dominance of long-range
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screening, as of degeneracy, in the polarizable electron gas. Logical examination shows
that this nexus is broken only by giving up the standard picture of charge fluctuations in
metals. Diffusively inspired models would seem to do just this [19–21]. So far no such model
has rationalized the heroic departure from principles that have been understood, widely and
thoroughly, for some time [32].

We envisage two extensions to this work: the systematic inclusion of Coulomb screening
within the microscopic structure of the fluctuations [29], and the analysis of shot noise as
a kinetic process quite separate from thermally driven noise [30]. Coulomb effects are
particularly evident in strongly confined electron systems, such as the two-dimensional electron
gas in a III–V heterojunction quantum well [28]. Self-consistent Coulomb screening in a
confined channel should markedly reduce the scale of thermal fluctuations in the current.

Shot noise and thermal noise have disparate properties. Shot noise never scales with
ambient temperature, while excess thermal current noise must do so if there is strong
degeneracy. Coulomb effects too may differentiate between the two kinds of fluctuation.
If so, then selective action of the Coulomb correlations could serve as an experimental tool to
distinguish between excess thermal current noise and shot noise. This would help to pinpoint
both the distinct sources of non-equilibrium mesoscopic fluctuations and the disposition of
Coulomb forces at small scales. We take up these themes in the forthcoming papers.

Every formalism for mesoscopic noise stands or falls by its new predictions [20, 29].
Boltzmannian kinetics is obviously not equipped to give the final word on quantum fluctuation
effects; be that as it may, it hardly needs saying that any mesoscopic model, whatever its origin,
should be totally consistent with the established physical facts. In the context of the metallic
electron gas, noise descriptions which claim to be truly microscopic must address full sum-rule
consistency as a matter of course. This transcends semi-classical analysis and is by far our
most important message.
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Appendix. Uniform Drude model

We derive the dynamical fluctuation structure for a single parabolic conduction band with
uniform electron density n and constant mobility µe = eτ/m∗, where τ is the spin-
independent collision time and m∗ the effective mass. The system is driven by a uniform
field Ẽ = E = −Ex̂ acting in the negative (drain-to-source) direction. We take variations
which are homogeneous over the sample region, so that the fluctuations of interest have no
spatial dependence.

The Boltzmann equation in the model is[
∂

∂t
+
eE

h̄

∂

∂kx
+

1

τ

]
fk(t) = 〈f (t)〉〈f eq〉

f
eq
k

τ
. (A.1)

Since the Boltzmann operator is linear, the fluctuation structure is qualitatively similar to that
for elastic scattering (differences arise from the inhomogeneous term in f eq, notably in the
behaviours ofR(t) and'f (t)). We solve equation (A.1) with Fourier transforms in reciprocal
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space, so the transform

Fρ ≡ �−1
∑

k

fk exp(ik · ρ)

of the steady-state distribution takes the form

Fρ = F0

F
eq
0

F
eq
ρ

1− ikdρx
(A.2)

where kd = eEτ/h̄ and F0 = 1
2 〈f 〉 per spin state. While a formal distinction is made between

F0 andF eq
0 , the physical normalization is always F0 = F eq

0 = 1
2n. Note also that Fρ is singular

for ρx = −ik−1
d . In wave-vector space this means that fk is non-analytic at E = 0. The same

can be said for 'fk.
The transform of the dynamic response function:

Rρρ′(ω) ≡ 1

�2

∑
k

∑
k′

Rkk′(ω) exp[i(k · ρ− k′ · ρ′)]

has the equation

[−iωτ − ikdρx + 1] Rρρ′(ω) = τδ(ρ− ρ′) +
R0ρ′(ω)

F
eq
0

F eq
ρ . (A.3)

For ρ = 0 this leads to

R0ρ′(ω) = − δ(ρ′)
i(ω + iη)

. (A.4)

On the other hand, the low-frequency adiabatic part of Rρρ′ scales with the steady-state solution
Fρ (in a collision-time model the asymptotic form Fρ/

1
2n replaces 'F ρ/

1
2 'n). On denoting

the correlated part by Cρρ′ and recalling that the adiabatic part exhausts the normalization of
R0ρ′ , we obtain

Rρρ′(ω) = Cρρ′(ω)− δ(ρ′)
i(ω + iη)

Fρ

F0
. (A.5)

When the above is put together with equations (A.2)–(A.4) we arrive, after some algebra, at
the explicit formula for the correlated propagator:

Cρρ′(ω) = τ δ(ρ− ρ′)− (Fρ/F0)δ(ρ
′)

1− ikdρx − iωτ
. (A.6)

We can use equation (A.6) directly to evaluate both dissipative and non-dissipative
contributions to the noise. Using the reciprocal-space representation

v ↔ −i(h̄/m∗) ∂/∂ρ

the power density P of equation (35) is

P = 2
e2E2

kBT

(
− ih̄

m∗

)2{
∂

∂ρx

∫
dνρ ′ Cρρ′(0)

∂

∂ρ ′x
'F

eq
ρ ′

}
ρ→0

= 2
e2E2τ

kBT

(
h̄

m∗

)2{
− ∂

2

∂ρ2
x

'F eq
ρ

}
ρ→0

= σE2. (A.7)

The Drude conductivity σ = neµe appears when we apply the relation{
− ∂

2

∂ρ2
x

'F eq
ρ

}
ρ→0

= 〈k2
x 'f

eq〉 = m
∗kBT

h̄2

(
n

2

)
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to the middle line of the equation. A contribution containing 〈vx 'f eq〉 = 0 vanishes trivially.
The hot-electron spectral density Sg in the static limit (recall equation (39)) is calculated

similarly:

Sg = 2
(eE · x̂)3

h̄

{∫
dνρ ′

∫
dνρ ′′ vxCρρ′(0)v

′
xCρ′ρ′′(0)(−iρ ′′x 'F

eq
ρ ′′ )

}
ρ→0

= 2
e3E3τ 2h̄

m∗2

{[
∂

∂ρx

1

1− ikdρx

(
∂

∂ρx

−iρx 'F
eq
ρ

1− ikdρx

)]
ρ→0

−
[
∂

∂ρx

Fρ/F0

1− ikdρx

]
ρ→0

[
∂

∂ρ ′x

−iρ ′x 'F
eq
ρ ′

1− ikdρ ′x

]
ρ ′→0

}
. (A.8)

We evaluate this with the help of the relations'F eq
0 = 1

2 'n and {∂Fρ/∂ρx}ρ→0 = ikdF0, the
latter following from equation (A.2). The result is

Sg = σm∗µ2
eE

4

(
'n

n

)
. (A.9)
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[17] Blanter Ya and Büttiker M 1999 Preprint cond-mat/9910158
[18] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[19] For example: the compressibility sum rule (see reference [32]) links the magnitude of electron–hole correlations

to the total density of a degenerate system. In the diffusive approaches, the correlations are perforce keyed to
the notional density of mobile diffusers only, because the carriers deep in the Fermi sea are excluded from the
calculation of diffusive transport [18] (moreover, this notional density is defined ad hoc). This leads directly
to an unphysical screening response and violation of quasi-neutrality (perfect-screening sum rule) over the
size of the sample.

[20] Green F and Das M P 2000 Proc. UPoN’99: 2nd Int. Conf. on Unsolved Problems of Noise and Fluctuations
(AIP Proc. 511) ed D Abbott and L B Kish (New York: American Institute of Physics) pp 422–33

and for a similar discussion see
Green F and Das M P 1999 Preprint cond-mat/9905086

[21] Das M P and Green F 1999 Proc. 23rd Int. Workshop on Condensed Matter Theories ed G S Anagnostatos (New
York: Nova Science) at press

(Das M P and Green F 1999 Preprint cond-mat/9910183)
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